Vertex operator algebras with central charges $1 / 2$ and $-68 / 7$ (v.5)

Kiyokazu Nagatomo

Lie algebras, Vertex Operator Algebras, and Related Topics
August 14-18, University of Notre Dame, Department of Mathematics
(1) Introduction
(2) The 3rd oder modular linear differential equations - a short course

- The 3rd oder modular linear differential equations
- Frobenius method
(3) Vertex operator algebras with central charge $1 / 2$
- MLDE for $c=1 / 2$
- Theorem $(c=1 / 2)$
- Proof ($c=1 / 2$)
- The characters for $c=1 / 2$
- Remarks
(4) Vertex operator algebras with central charge $-68 / 7$
- Frobenius method for $c=-68 / 7$
- Thereom ($c=-68 / 7$)
- MLDE and characters $(c=-68 / 7)$
(5) Lattice vertex operator algebras
- Vertex operator algebras of central charge $c=8$
- Vertex operator algebras with central charge $c=16$

Introduction

(1) Vertex operator algebras (VOA for short) with central charges $1 / 2$ or $-68 / 7$ whose sets of characters form fundamental systems of 3rd order modular linear differential equations (MLDE for short) are discussed.

- Such VOAs are either isomorphic to the minimal series of

Virasoro VOAs with central charges $c=c_{3,4}=1 / 2$ or
$c_{2,7}=-68 / 7$.
(2) We also study VOAs with central charges 8 or 16

- The lattice vertex operator algebras V_{L}, where L is the $\sqrt{2} E_{8}$ $(c=8)$ or the Barnes-Wall lattice $(c=16)$ appear
(3) The characters of each VOA are obtained by solving the associated with MLDE (by Frobenius method)

Introduction

(1) Vertex operator algebras (VOA for short) with central charges $1 / 2$ or $-68 / 7$ whose sets of characters form fundamental systems of 3rd order modular linear differential equations (MLDE for short) are discussed.

- Such VOAs are either isomorphic to the minimal series of Virasoro VOAs with central charges $c=c_{3,4}=1 / 2$ or $c_{2,7}=-68 / 7$.
(2) We also study VOAs with central charges 8 or 16
- The lattice vertex operator algebras V_{L}, where L is the $\sqrt{2} E_{8}$ $(c=8)$ or the Barnes-Wall lattice $(c=16)$ appear
(3) The characters of each VOA are obtained by solving the associated with MLDE (by Frobenius method)

Introduction

(1) Vertex operator algebras (VOA for short) with central charges $1 / 2$ or $-68 / 7$ whose sets of characters form fundamental systems of 3rd order modular linear differential equations (MLDE for short) are discussed.

- Such VOAs are either isomorphic to the minimal series of Virasoro VOAs with central charges $c=c_{3,4}=1 / 2$ or $c_{2,7}=-68 / 7$.
(2) We also study VOAs with central charges 8 or 16 .
$(c=8)$ or the Barnes-Wall lattice $(c=16)$ appear.
- The characters of each V/OA are obtained by solving the associated with MLDE (by Frobenius method)

Introduction

(1) Vertex operator algebras (VOA for short) with central charges $1 / 2$ or $-68 / 7$ whose sets of characters form fundamental systems of 3rd order modular linear differential equations (MLDE for short) are discussed.

- Such VOAs are either isomorphic to the minimal series of Virasoro VOAs with central charges $c=c_{3,4}=1 / 2$ or $c_{2,7}=-68 / 7$.
(2) We also study VOAs with central charges 8 or 16 .
- The lattice vertex operator algebras V_{L}, where L is the $\sqrt{2} E_{8}$ $(c=8)$ or the Barnes-Wall lattice $(c=16)$ appear.
(3) The characters of each VOA are obtained by solving the associated with MLDE (by Frobenius method)

Introduction

(1) Vertex operator algebras (VOA for short) with central charges $1 / 2$ or $-68 / 7$ whose sets of characters form fundamental systems of 3rd order modular linear differential equations (MLDE for short) are discussed.

- Such VOAs are either isomorphic to the minimal series of Virasoro VOAs with central charges $c=c_{3,4}=1 / 2$ or $c_{2,7}=-68 / 7$.
(2) We also study VOAs with central charges 8 or 16 .
- The lattice vertex operator algebras V_{L}, where L is the $\sqrt{2} E_{8}$ $(c=8)$ or the Barnes-Wall lattice $(c=16)$ appear.
(3) The characters of each VOA are obtained by solving the associated with MLDE (by Frobenius method).

3rd oder modular linear differential equations

(1) The 3rd oder modular linear differential equation (MLDE)

$$
\begin{aligned}
& D^{3}(f)-\frac{1}{2} E_{2} D(f)+\left\{\frac{1}{2} E_{2}^{\prime}-\left(h^{2}-\frac{h}{2}-\frac{c h}{8}+\frac{c^{2}}{192}+\frac{c}{24}\right) E_{4}\right\} D(f) \\
& +\frac{c}{24}\left(\frac{c}{12}+\frac{1}{2}-h\right)\left(h-\frac{c}{24}\right) E_{6} f=0, \quad D=^{\prime}=q \frac{d}{d q} .
\end{aligned}
$$

(2) The c is a central charge and h is the minimal conformal weight and $E_{k}(q)$ is the Eisenstein series with weight k
(3) The space of solutions is invariant under the slash 0 action of the full modular group $S L_{2}(\mathbb{Z})$

3rd oder modular linear differential equations

(1) The 3rd oder modular linear differential equation (MLDE)

$$
\begin{aligned}
& D^{3}(f)-\frac{1}{2} E_{2} D(f)+\left\{\frac{1}{2} E_{2}^{\prime}-\left(h^{2}-\frac{h}{2}-\frac{c h}{8}+\frac{c^{2}}{192}+\frac{c}{24}\right) E_{4}\right\} D(f) \\
& +\frac{c}{24}\left(\frac{c}{12}+\frac{1}{2}-h\right)\left(h-\frac{c}{24}\right) E_{6} f=0, \quad D=^{\prime}=q \frac{d}{d q}
\end{aligned}
$$

(2) The c is a central charge and h is the minimal conformal weight and $E_{k}(q)$ is the Eisenstein series with weight k.

3rd oder modular linear differential equations

(1) The 3rd oder modular linear differential equation (MLDE)

$$
\begin{aligned}
& D^{3}(f)-\frac{1}{2} E_{2} D(f)+\left\{\frac{1}{2} E_{2}^{\prime}-\left(h^{2}-\frac{h}{2}-\frac{c h}{8}+\frac{c^{2}}{192}+\frac{c}{24}\right) E_{4}\right\} D(f) \\
& +\frac{c}{24}\left(\frac{c}{12}+\frac{1}{2}-h\right)\left(h-\frac{c}{24}\right) E_{6} f=0, \quad D=^{\prime}=q \frac{d}{d q}
\end{aligned}
$$

(2) The c is a central charge and h is the minimal conformal weight and $E_{k}(q)$ is the Eisenstein series with weight k.
(3) The space of solutions is invariant under the slash 0 action of the full modular group $S L_{2}(\mathbb{Z})$.

Frobenius method

(1) A solution of the form $f=\sum_{n=0}^{\infty} a_{n} q^{\varepsilon+n}$ with $a_{0}=1$ and $\varepsilon \in \mathbb{Q}$. We suppose that an index is a rational number.
(2) The index
(3) The Frobenius method determines $a_{n}(n \in \mathbb{N})$ uniquely by the recursion relation for a given $a_{0} \neq 0$:

Frobenius method

(1) A solution of the form $f=\sum_{n=0}^{\infty} a_{n} q^{\varepsilon+n}$ with $a_{0}=1$ and $\varepsilon \in \mathbb{Q}$. We suppose that an index is a rational number.
(2) The index $\varepsilon \in\{-c / 24, h-c / 24, c / 12-h+1 / 2\}$.

The Frobenius method determines $a_{n}(n \in \mathbb{N})$ uniquely by the recursion relation for a given $a_{0} \neq 0$:

as far as the denominators do not vanish.

Frobenius method

(1) A solution of the form $f=\sum_{n=0}^{\infty} a_{n} q^{\varepsilon+n}$ with $a_{0}=1$ and $\varepsilon \in \mathbb{Q}$. We suppose that an index is a rational number.
(2) The index $\varepsilon \in\{-c / 24, h-c / 24, c / 12-h+1 / 2\}$.
(3) The Frobenius method determines $a_{n}(n \in \mathbb{N})$ uniquely by the recursion relation for a given $a_{0} \neq 0$:

$$
\begin{aligned}
& a_{n}=\left(n+\varepsilon+\frac{c}{24}\right)^{-1}\left(n+\varepsilon+\frac{c}{24}-h\right)^{-1}\left(n+\varepsilon-\frac{c}{12}-\frac{1}{2}+h\right)^{-1} \\
& \times \sum_{i=1}^{n}\left\{(\varepsilon - i + n) \left(12(2 i-\varepsilon-n) \sigma_{1}(i)\right.\right. \\
& \left.+\frac{5}{4}\left(c^{2}+8 c-24 h c-96 h+192 h^{2}\right) \sigma_{3}(i)\right) \\
& \left.-\frac{7}{96} c(c-24 h)(c-12 h+6) \sigma_{5}(i)\right\} a_{n-i},\left(E_{k}=1-A_{k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}\right)
\end{aligned}
$$

as far as the denominators do not vanish.

The MLDE and conformal weights for $c=1 / 2$

(1) The MLDE for $c=1 / 2$

$$
\begin{aligned}
D^{3}(f)-\frac{1}{2} E_{2} D(f)+ & \left\{\frac{1}{2} E_{2}^{\prime}-\left(17 / 768-\frac{9 h}{16}+h^{2}\right) E_{4}\right\} D(f) \\
& +\frac{1}{48}\left(\frac{13}{24}-h\right)\left(-\frac{1}{48}+h\right) E_{6} f=0,
\end{aligned}
$$

(2) Let f_{0} be the formal solution (q-series) with the index $(-c / 24=)-1 / 48$. Then the second coefficient of f_{0} is $\frac{31\left(32 h^{2}-18 h+1\right)}{4(h-1)(16 h+7)}$
(3) m is an integer. \Longleftrightarrow The quadratic equation in h must have an integral square discriminant $d^{2}(d \in \mathbb{Z})$ since h is rational $(1058 m-23 d-8959)(1058 m+23 d-8959)=55353600$

The MLDE and conformal weights for $c=1 / 2$

(1) The MLDE for $c=1 / 2$

$$
\begin{aligned}
D^{3}(f)-\frac{1}{2} E_{2} D(f)+ & \left\{\frac{1}{2} E_{2}^{\prime}-\left(17 / 768-\frac{9 h}{16}+h^{2}\right) E_{4}\right\} D(f) \\
& +\frac{1}{48}\left(\frac{13}{24}-h\right)\left(-\frac{1}{48}+h\right) E_{6} f=0,
\end{aligned}
$$

(2) Let f_{0} be the formal solution (q-series) with the index $(-c / 24=)-1 / 48$. Then the second coefficient of f_{0} is

$$
m:=a_{1}=\frac{31\left(32 h^{2}-18 h+1\right)}{4(h-1)(16 h+7)}
$$

(3) m is an integer. \Longleftrightarrow The quadratic equation in h must have an integral square discriminant $d^{2}(d \in \mathbb{Z})$ since h is rational $(1058 m-23 d-8959)(1058 m+23 d-8959)=55353600$

The MLDE and conformal weights for $c=1 / 2$

(1) The MLDE for $c=1 / 2$

$$
\begin{aligned}
D^{3}(f)-\frac{1}{2} E_{2} D(f)+ & \left\{\frac{1}{2} E_{2}^{\prime}-\left(17 / 768-\frac{9 h}{16}+h^{2}\right) E_{4}\right\} D(f) \\
& +\frac{1}{48}\left(\frac{13}{24}-h\right)\left(-\frac{1}{48}+h\right) E_{6} f=0,
\end{aligned}
$$

(2) Let f_{0} be the formal solution (q-series) with the index $(-c / 24=)-1 / 48$. Then the second coefficient of f_{0} is

$$
m:=a_{1}=\frac{31\left(32 h^{2}-18 h+1\right)}{4(h-1)(16 h+7)}
$$

(m is an integer. \Longleftrightarrow The quadratic equation in h must have an integral square discriminant $d^{2}(d \in \mathbb{Z})$ since h is rational. \Longleftrightarrow
$(1058 m-23 d-8959)(1058 m+23 d-8959)=55353600$.

Conformal weights for $c=1 / 2$ (1)

(1) All solutions (m, d) are given by

$$
\{(-166, \pm 8019),(0, \pm 217),(23, \pm 585),(93, \pm 3875)\} .
$$

© The set of h with integral a_{1} are

- Some pairs of values of h give the same set of conformal weights (and then indices)

Values of h (Conformal weights)	Indices
$171 / 176,-9 / 22$	$-1 / 48,251 / 264,-227 / 528$
$1 / 2,1 / 16$	$-1 / 48,23 / 48,1 / 24$
$-15 / 16,3 / 2$	$-1 / 48,-23 / 24,71 / 4$
$-1 / 2,17 / 16$	$-1 / 48,25,48,25 / 24,24$

Conformal weights for $c=1 / 2$ (1)

(1) All solutions (m, d) are given by

$$
\{(-166, \pm 8019),(0, \pm 217),(23, \pm 585),(93, \pm 3875)\} .
$$

(2) The set of h with integral a_{1} are

$$
\left\{-\frac{15}{16},-\frac{1}{2},-\frac{9}{22}, \frac{1}{16}, \frac{1}{2}, \frac{171}{176}, \frac{17}{16}, \frac{3}{2}\right\} .
$$

- Some pairs of values of h give the same set of conformal weights (and then indices)

Conformal weights for $c=1 / 2$ (1)

(1) All solutions (m, d) are given by

$$
\{(-166, \pm 8019),(0, \pm 217),(23, \pm 585),(93, \pm 3875)\} .
$$

(2) The set of h with integral a_{1} are

$$
\left\{-\frac{15}{16},-\frac{1}{2},-\frac{9}{22}, \frac{1}{16}, \frac{1}{2}, \frac{171}{176}, \frac{17}{16}, \frac{3}{2}\right\} .
$$

(3) Some pairs of values of h give the same set of conformal weights (and then indices).

Conformal weights for $c=1 / 2$ (1)

(1) All solutions (m, d) are given by

$$
\{(-166, \pm 8019),(0, \pm 217),(23, \pm 585),(93, \pm 3875)\}
$$

(2) The set of h with integral a_{1} are

$$
\left\{-\frac{15}{16},-\frac{1}{2},-\frac{9}{22}, \frac{1}{16}, \frac{1}{2}, \frac{171}{176}, \frac{17}{16}, \frac{3}{2}\right\} .
$$

(3) Some pairs of values of h give the same set of conformal weights (and then indices).

Values of h (Conformal weights)	Indices
$171 / 176,-9 / 22$	$-1 / 48,251 / 264,-227 / 528$
$1 / 2,1 / 16$	$-1 / 48,23 / 48,1 / 24$
$-15 / 16,3 / 2$	$-1 / 48,-23 / 24,71 / 4$
$-1 / 2,17 / 16$	$-1 / 48,-25 / 48,25 / 24$

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$

(3) $h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since
the solution with central charge $3 / 2$ has negative coefficients
$\left(a_{6}=-31299\right)$
(4) Conclusion: $h=1 / 2 \Rightarrow$ Ising model.

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.

$$
f_{\frac{171}{176}}=\frac{1}{\sqrt[48]{q}}-166 q^{47 / 48}+\cdots
$$

(3) $h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients ($a_{6}=-31299$)Conclusion: $h=1 / 2 \Rightarrow$ Ising model

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.

(3) $h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients ($a_{6}=-31299$)Conclusion: $h=1 / 2 \Rightarrow$ Ising model.

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.

$$
\begin{aligned}
& f_{\frac{171}{176}}=\frac{1}{\sqrt[48]{q}}-166 q^{47 / 48}+\cdots, \quad f_{\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+q^{95 / 48}+q^{143 / 48}+\cdots, \\
& f_{-\frac{15}{16}}=\frac{1}{\sqrt[48]{q}}+23 q^{47 / 48}+2324 q^{95 / 48}+87102 q^{143 / 48}+\cdots, \\
& f_{-\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+93 q^{47 / 48}+\frac{12131}{5} q^{95 / 48}+32479 q^{143 / 48}+\cdots
\end{aligned}
$$$h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients $\left(a_{6}=-31299\right)$Conclusion: $h=1 / 2 \Rightarrow$ Ising model.

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.
$f_{\frac{171}{176}}=\frac{1}{\sqrt[48]{q}}-166 q^{47 / 48}+\cdots, \quad f_{\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+q^{95 / 48}+q^{143 / 48}+\cdots$,
$f_{-\frac{15}{16}}=\frac{1}{\sqrt[48]{q}}+23 q^{47 / 48}+2324 q^{95 / 48}+87102 q^{143 / 48}+\cdots$,
$f_{-\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+93 q^{47 / 48}+\frac{12131}{5} q^{95 / 48}+32479 q^{143 / 48}+\cdots$.$h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients ($a_{6}=-31299$)Conclusion: $h=1 / 2 \Rightarrow$ Ising model.

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.
$f_{\frac{171}{176}}=\frac{1}{\sqrt[48]{q}}-166 q^{47 / 48}+\cdots, \quad f_{\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+q^{95 / 48}+q^{143 / 48}+\cdots$,
$f_{-\frac{15}{16}}=\frac{1}{\sqrt[48]{q}}+23 q^{47 / 48}+2324 q^{95 / 48}+87102 q^{143 / 48}+\cdots$,
$f_{-\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+93 q^{47 / 48}+\frac{12131}{5} q^{95 / 48}+32479 q^{143 / 48}+\cdots$.$h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients ($a_{6}=-31299$)Conclusion: $h=1 / 2 \Rightarrow$ Ising model.

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.

$$
\begin{aligned}
& f_{\frac{171}{176}}=\frac{1}{\sqrt[48]{q}}-166 q^{47 / 48}+\cdots, \quad f_{\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+q^{95 / 48}+q^{143 / 48}+\cdots, \\
& f_{-\frac{15}{16}}=\frac{1}{\sqrt[48]{q}}+23 q^{47 / 48}+2324 q^{95 / 48}+87102 q^{143 / 48}+\cdots, \\
& f_{-\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+93 q^{47 / 48}+\frac{12131}{5} q^{95 / 48}+32479 q^{143 / 48}+\cdots .
\end{aligned}
$$

(3) $h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients ($a_{6}=-31299$).Conclusion: $h=1 / 2 \Rightarrow$ Ising model.
}

Conformal weights for $c=1 / 2$ (2)

(1) The set of h is reduced to, for instance,

$$
\left\{-\frac{15}{16},-\frac{1}{2}, \frac{1}{2}, \frac{171}{176}\right\} .
$$

(2) The several terms of q-expansions of f_{h} (whose conformal weights are h) of the index $-1 / 48$.
$f_{\frac{171}{176}}=\frac{1}{\sqrt[48]{q}}-166 q^{47 / 48}+\cdots, \quad f_{\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+q^{95 / 48}+q^{143 / 48}+\cdots$,
$f_{-\frac{15}{16}}=\frac{1}{\sqrt[48]{q}}+23 q^{47 / 48}+2324 q^{95 / 48}+87102 q^{143 / 48}+\cdots$,
$f_{-\frac{1}{2}}=\frac{1}{\sqrt[48]{q}}+93 q^{47 / 48}+\frac{12131}{5} q^{95 / 48}+32479 q^{143 / 48}+\cdots$.
(3) $h \neq 171 / 176\left(a_{1}<0\right), h \neq-1 / 2\left(a_{3} \notin \mathbb{Z}\right) . h \neq-15 / 16$ since the solution with central charge $3 / 2$ has negative coefficients ($a_{6}=-31299$).
(9) Conclusion: $h=1 / 2 \Rightarrow$ Ising model.

Theorem ($c=1 / 2$)

Theorem 1

Let V be a vertex operator algebra with central charge $1 / 2$.
Suppose that
(a) The conformal weights are rational numbers,
(b) The space of characters is 3-dimensional,
(c) The set of characters forms a fundamental system of solutions of a 3rd order MLDE.

Then V is isomorphic to the Virasoro vertex operator algebra with central charge $1 / 2$ and conformal weight $\{0,1 / 2,1 / 16\}$.

Proof

Proof.

(1) The uniqueness of solutions of the MLDE shows $\mathcal{X}_{V}=\mathcal{X}_{V_{1 / 2}}$.
(2) Let V^{ω} be the vertex operator subalgebra generated by the Virasoro element $\omega \in V_{2}$.
(3) ch $1 / \omega<h_{1 /}$
(9) Then either $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle$ or $V_{1 / 2}$
(6) Suppose that $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$. Then $\operatorname{ch}_{V}=\operatorname{ch}_{L_{1 / 2}}<\operatorname{ch}_{M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle}=\operatorname{ch}_{V \omega} \Longrightarrow$ Contradiction.
(0) Hence $V \cong V_{1 / 2}$ since $\operatorname{ch}_{V}=\operatorname{ch}_{V_{1 / 2}}=\operatorname{ch}_{V} \omega$.

Proof

Proof.

(1) The uniqueness of solutions of the MLDE shows $\mathcal{X}_{V}=\mathcal{X}_{V_{1 / 2}}$.
(2) Let V^{ω} be the vertex operator subalgebra generated by the Virasoro element $\omega \in V_{2}$.
(3) $\operatorname{ch}_{V} \omega \leq \operatorname{ch}_{V}$.
(4) Then either $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle$ or $V_{1 / 2}$
(6) Sunnose that $V \omega \cong M(1 / 2,0) /\left\langle L_{1} 1\right\rangle$. Then $\operatorname{ch}_{V}=\operatorname{ch}_{L_{1 / 2}}<\operatorname{ch}_{M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle}=\operatorname{ch}_{V} \omega \Longrightarrow$ Contradiction.
(6) Hence $V \cong V_{1 / 2}$ since ch ${ }_{V}=\operatorname{ch}_{V_{1 / 2}}=\operatorname{ch}_{V} \omega$

Proof

Proof.

(1) The uniqueness of solutions of the MLDE shows $\mathcal{X}_{V}=\mathcal{X}_{V_{1 / 2}}$.
(2) Let V^{ω} be the vertex operator subalgebra generated by the Virasoro element $\omega \in V_{2}$.
(3) $\operatorname{ch}_{V \omega} \leq \operatorname{ch}_{V}$.
(9) Then either $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle$ or $V_{1 / 2}$
(6) Suppose that $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$. Then $\operatorname{ch}_{V}=\operatorname{ch}_{L_{1 / 2}}<\operatorname{ch}_{M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle}=\operatorname{ch}_{V \omega} \Longrightarrow$ Contradiction.
(0) Hence $V \cong V_{1 / 2}$ since $\operatorname{ch}_{V}=\operatorname{ch}_{V_{1 / 2}}=\operatorname{ch}_{V} \omega$

Proof

Proof.

(1) The uniqueness of solutions of the MLDE shows $\mathcal{X}_{V}=\mathcal{X}_{V_{1 / 2}}$.
(2) Let V^{ω} be the vertex operator subalgebra generated by the Virasoro element $\omega \in V_{2}$.
(3) $\mathrm{ch}_{V \omega} \leq \mathrm{ch}_{V}$.
(9) Then either $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$ or $V_{1 / 2}$.
(3) Suppose that $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle$. Then $\operatorname{ch}_{V}=\operatorname{ch}_{L_{1 / 2}}<\operatorname{ch}_{M(1 / 2,0) /\left\langle L_{-1} 1\right\rangle}=\operatorname{ch}_{V \omega} \Longrightarrow$ Contradiction.
(0) Hence $V \cong V_{1 / 2}$ since $\operatorname{ch}_{V}=\operatorname{ch}_{V_{1 / 2}}=\operatorname{ch}_{V} \omega$.

Proof

Proof.

(1) The uniqueness of solutions of the MLDE shows $\mathcal{X}_{V}=\mathcal{X}_{V_{1 / 2}}$.
(2) Let V^{ω} be the vertex operator subalgebra generated by the Virasoro element $\omega \in V_{2}$.
(3) $\operatorname{ch}_{V \omega} \leq \operatorname{ch}_{V}$.
(9) Then either $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$ or $V_{1 / 2}$.
(5) Suppose that $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$. Then $\operatorname{ch}_{V}=\operatorname{ch}_{L_{1 / 2}}<\operatorname{ch}_{M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle}=\operatorname{ch}_{V \omega} \Longrightarrow$ Contradiction.
© Hence

Proof

Proof.

(1) The uniqueness of solutions of the MLDE shows $\mathcal{X}_{V}=\mathcal{X}_{V_{1 / 2}}$.
(2) Let V^{ω} be the vertex operator subalgebra generated by the Virasoro element $\omega \in V_{2}$.
(3) $\operatorname{ch}_{V \omega} \leq \operatorname{ch}_{V}$.
(9) Then either $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$ or $V_{1 / 2}$.
(5) Suppose that $V^{\omega} \cong M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle$. Then $\mathrm{ch}_{V}=\operatorname{ch}_{L_{1 / 2}}<\operatorname{ch}_{M(1 / 2,0) /\left\langle L_{-1} \mathbf{1}\right\rangle}=\operatorname{ch}_{V \omega} \Longrightarrow$ Contradiction.
(0) Hence $V \cong V_{1 / 2}$ since $\operatorname{ch}_{V}=\operatorname{ch}_{V_{1 / 2}}=\operatorname{ch}_{V^{\omega}}$.

Corollary

(d) Let $0, h_{1}$ and h_{2} be conformal weights. Then $h_{1}+h_{2}=13 / 24$.

Corollary 2

The condition (c) is replaced by (d).

Proof.

(1) By (d) (formal) characters are formal solutions of a MLDE.
(2) These characters converge by the Forbenius method.
(3) The condition (c) follows form (d)

Corollary

(d) Let $0, h_{1}$ and h_{2} be conformal weights. Then $h_{1}+h_{2}=13 / 24$.

Corollary 2

The condition (c) is replaced by (d).

Proof.

(1) By (d) (formal) characters are formal solutions of a MLDE.
(2) These characters converge by the Forbenius method.
(3) The condition (c) follows form (d).

Corollary

(d) Let $0, h_{1}$ and h_{2} be conformal weights. Then $h_{1}+h_{2}=13 / 24$.

Corollary 2

The condition (c) is replaced by (d).

Proof.

(1) By (d) (formal) characters are formal solutions of a MLDE.
(2) These characters converge by the Forbenius method.
(3) The condition (c) follows form (d).

Corollary

(d) Let $0, h_{1}$ and h_{2} be conformal weights. Then $h_{1}+h_{2}=13 / 24$.

Corollary 2

The condition (c) is replaced by (d).

Proof.

(1) By (d) (formal) characters are formal solutions of a MLDE.
(2) These characters converge by the Forbenius method.
(3) The condition (c) follows form (d).

The characters for $c=1 / 2$

(1) The character of the VOA $V_{1 / 2}$

$$
\operatorname{ch}_{V_{1 / 2}}(\tau)=\frac{\phi_{1}(q)+\phi_{2}(q)}{2}=\eta\left(q^{2}\right)^{-1} \sum_{n \in \mathbb{Z}} q^{(2 n+1 / 4)^{2}}
$$

(2) The character of the $V_{1 / 2}$-module $V_{1 / 2}(1 / 2)$
(3) The character of the $V_{1 / 2}$-module $V_{1 / 2}(1 / 16)$

The characters for $c=1 / 2$

(1) The character of the VOA $V_{1 / 2}$

$$
\operatorname{ch}_{V_{1 / 2}}(\tau)=\frac{\phi_{1}(q)+\phi_{2}(q)}{2}=\eta\left(q^{2}\right)^{-1} \sum_{n \in \mathbb{Z}} q^{(2 n+1 / 4)^{2}}
$$

(2) The character of the $V_{1 / 2}$-module $V_{1 / 2}(1 / 2)$

$$
\mathrm{ch}_{1 / 2}=\frac{\phi_{1}(q)-\phi_{2}(q)}{2}=\eta\left(q^{2}\right)^{-1} \sum_{n \in \mathbb{Z}} q^{(2 n+3 / 4)^{2}}
$$

(3) The character of the $V_{1 / 2}$-module $V_{1 / 2}(1 / 16)$

The characters for $c=1 / 2$

(1) The character of the VOA $V_{1 / 2}$

$$
\operatorname{ch}_{V_{1 / 2}}(\tau)=\frac{\phi_{1}(q)+\phi_{2}(q)}{2}=\eta\left(q^{2}\right)^{-1} \sum_{n \in \mathbb{Z}} q^{(2 n+1 / 4)^{2}}
$$

(2) The character of the $V_{1 / 2}$-module $V_{1 / 2}(1 / 2)$

$$
\mathrm{ch}_{1 / 2}=\frac{\phi_{1}(q)-\phi_{2}(q)}{2}=\eta\left(q^{2}\right)^{-1} \sum_{n \in \mathbb{Z}} q^{(2 n+3 / 4)^{2}}
$$

(3) The character of the $V_{1 / 2}$-module $V_{1 / 2}(1 / 16)$

$$
\mathrm{ch}_{1 / 16}=\phi_{3}(q) / \sqrt{2}=\eta\left(q^{2}\right)^{-1} \sum_{n \in \mathbb{Z}} q^{2(n+1 / 4)^{2}}
$$

Remarks

Remarks 1

(1) Indeed, characters of the Ising model are known.
(2) In this talk every character is obtained by using the Frobenius method and the theory of modular forms (with helps of computer and "The On-Line Encyclopedia of Integer Sequences ${ }^{\circledR}\left(\text { OEIS }{ }^{\circledR}\right)^{\circledR}$
(https://oeis.org/?language=english)
(3) This method can be applied to the affine VOAs, lattice VOAs, etc., as long as we know central charge (and conformal weights).

Remarks

Remarks 1

(1) Indeed, characters of the Ising model are known.
(2) In this talk every character is obtained by using the Frobenius method and the theory of modular forms (with helps of computer and "The On-Line Encyclopedia of Integer Sequences ${ }^{\circledR}\left(\right.$ OEIS ${ }^{\circledR}$)"
(https://oeis.org/?language=english)
(3) This method can be applied to the affine VOAs, lattice VOAs,
etc., as long as we know central charge (and conformal weights)

Remarks

Remarks 1

(1) Indeed, characters of the Ising model are known.
(2) In this talk every character is obtained by using the Frobenius method and the theory of modular forms (with helps of computer and "The On-Line Encyclopedia of Integer Sequences ${ }^{\circledR}$ (OEIS ${ }^{\circledR}$)"
(https://oeis.org/?language=english)
(3) This method can be applied to the affine VOAs, lattice VOAs, etc., as long as we know central charge (and conformal weights).

Vertex operator algebras with central charge $-68 / 7$

 Frobenius method for $c=-68 / 7$(1) Let $f_{0}=\sum_{j=0}^{\infty} b_{j} q^{17 / 42+j}$ with $b_{0}=1$.
(2) The second coefficient b_{1} is given by

(3) Eq. (1) is rewritten as $\left(m=b_{1} \in \mathbb{Z}_{\geq 0}\right)$
$(103292-343 m) h^{2}+(73780-245 m) h$
(4) m is an integer and h is a rational number. \Longleftrightarrow The discriminant of (1) is d^{2} for some $d \in \mathbb{Z}$. \Longleftrightarrow

Vertex operator algebras with central charge $-68 / 7$

 Frobenius method for $c=-68 / 7$(1) Let $f_{0}=\sum_{j=0}^{\infty} b_{j} q^{17 / 42+j}$ with $b_{0}=1$.
(2) The second coefficient b_{1} is given by

$$
\begin{equation*}
b_{1}=-\frac{2108\left(49 h^{2}+35 h+6\right)}{49(h-1)(7 h+12)} . \tag{1}
\end{equation*}
$$

(3) Eq. (1) is rewritten as $\left(m=b_{1} \in \mathbb{Z}_{\geq 0}\right)$
$(103292-343 m) h^{2}+(73780-245 m) h$

$$
+588 m+12648=0
$$

(4) m is an integer and h is a rational number. \Longleftrightarrow The discriminant of (1) is d^{2} for some $d \in \mathbb{Z} . \Longleftrightarrow$

Vertex operator algebras with central charge $-68 / 7$

 Frobenius method for $c=-68 / 7$(1) Let $f_{0}=\sum_{j=0}^{\infty} b_{j} q^{17 / 42+j}$ with $b_{0}=1$.
(2) The second coefficient b_{1} is given by

$$
\begin{equation*}
b_{1}=-\frac{2108\left(49 h^{2}+35 h+6\right)}{49(h-1)(7 h+12)} . \tag{1}
\end{equation*}
$$

(3) Eq. (1) is rewritten as $\left(m=b_{1} \in \mathbb{Z}_{\geq 0}\right)$

$$
\begin{align*}
(103292-343 m) h^{2}+(73780- & 245 m) h \\
& +588 m+12648=0 . \tag{2}
\end{align*}
$$

(4) m is an integer and h is a rational number. \Longleftrightarrow

The discriminant of (1) is d^{2} for some $d \in \mathbb{Z} . \Longleftrightarrow$

Vertex operator algebras with central charge $-68 / 7$

 Frobenius method for $c=-68 / 7$(1) Let $f_{0}=\sum_{j=0}^{\infty} b_{j} q^{17 / 42+j}$ with $b_{0}=1$.
(2) The second coefficient b_{1} is given by

$$
\begin{equation*}
b_{1}=-\frac{2108\left(49 h^{2}+35 h+6\right)}{49(h-1)(7 h+12)} . \tag{1}
\end{equation*}
$$

(3) Eq. (1) is rewritten as $\left(m=b_{1} \in \mathbb{Z}_{\geq 0}\right)$

$$
\begin{align*}
(103292-343 m) h^{2}+(73780- & 245 m) h \\
& +588 m+12648=0 . \tag{2}
\end{align*}
$$

(9) m is an integer and h is a rational number. \Longleftrightarrow The discriminant of (1) is d^{2} for some $d \in \mathbb{Z}$. \qquad

$$
81(31-2 m)^{2}-32(31-2 m)(28 m+31)=d^{2} .
$$

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1).

132/133, -227/133, 72/77, -127/77, 179/203, $-324 / 203$,
$5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)$
q-series with the index $h+59 / 42$ are negative.
(3) The list of values of h (Step 2)

132/133, 72/77, 179/203, 5/7, -8/77, -47/77, -2/7, -3/7.
$(\sharp=8)$
(1) $h \neq 132 / 133,72 / 77,179 / 203,5 / 7 . \Leftarrow$ The b_{1} of q-series with the index $-h-13 / 42$ are negative.
(3) The list of values of h (Step 3). $\Rightarrow-8 / 77,-47 / 77,-2 / 7$, $-3 / 7$. $(\sharp=4)$
(0) $h \neq-8 / 77,-47 / 77 . \Leftarrow$ The b_{2} of the q-series with the
index $17 / 42$ are not integers.

Kiyokazu Nagatomo

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1).

$$
\begin{aligned}
& 132 / 133,-227 / 133,72 / 77,-127 / 77,179 / 203,-324 / 203, \\
& 5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)
\end{aligned}
$$

(2) $h \neq-227 / 133,-127 / 77,-324 / 203,-10 / 7 \Leftarrow$ The b_{1} of the q-series with the index $h+59 / 42$ are negative.
(1) $h \neq 132 / 133,72 / 77,179 / 203,5 / 7 . \Leftarrow$ The b_{1} of q-series with the index $-h-13 / 42$ are negative.

(0) $h \neq-8 / 77,-47 / 77$. \Leftarrow The b_{2} of the q-series with the
index 17/42 are not integers.

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1). 132/133, $-227 / 133,72 / 77,-127 / 77,179 / 203,-324 / 203$, $5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)$
(2) $h \neq-227 / 133,-127 / 77,-324 / 203,-10 / 7 \Leftarrow$ The b_{1} of the q-series with the index $h+59 / 42$ are negative.
(3) The list of values of h (Step 2). 132/133, 72/77, 179/203, 5/7, -8/77, -47/77, $-2 / 7,-3 / 7$. ($\#=8$)

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1). 132/133, -227/133, 72/77, -127/77, 179/203, $-324 / 203$, $5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)$
(2) $h \neq-227 / 133,-127 / 77,-324 / 203,-10 / 7 \Leftarrow$ The b_{1} of the q-series with the index $h+59 / 42$ are negative.
(3) The list of values of h (Step 2). 132/133, 72/77, 179/203, 5/7, -8/77, -47/77, $-2 / 7,-3 / 7$. $(\sharp=8)$
(9) $h \neq 132 / 133,72 / 77,179 / 203,5 / 7 . \Leftarrow$ The b_{1} of q-series with the index $-h-13 / 42$ are negative.
(0) $h \neq-8 / 77,-47 / 77$. \Leftarrow The b_{2} of the q-series with the

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1). 132/133, -227/133, 72/77, -127/77, 179/203, $-324 / 203$, $5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)$
(2) $h \neq-227 / 133,-127 / 77,-324 / 203,-10 / 7 \Leftarrow$ The b_{1} of the q-series with the index $h+59 / 42$ are negative.
(3) The list of values of h (Step 2). 132/133, 72/77, 179/203, 5/7, -8/77, -47/77, $-2 / 7,-3 / 7$. $(\sharp=8)$
(9) $h \neq 132 / 133,72 / 77,179 / 203,5 / 7 . \Leftarrow$ The b_{1} of q-series with the index $-h-13 / 42$ are negative.
(0) The list of values of h (Step 3). $\Rightarrow-8 / 77,-47 / 77,-2 / 7$, $-3 / 7 . \quad(\sharp=4)$

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1). 132/133, -227/133, 72/77, -127/77, 179/203, $-324 / 203$, $5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)$
(2) $h \neq-227 / 133,-127 / 77,-324 / 203,-10 / 7 \Leftarrow$ The b_{1} of the q-series with the index $h+59 / 42$ are negative.
(3) The list of values of h (Step 2). 132/133, 72/77, 179/203, 5/7, -8/77, -47/77, $-2 / 7,-3 / 7$. $(\sharp=8)$
(9) $h \neq 132 / 133,72 / 77,179 / 203,5 / 7 . \Leftarrow$ The b_{1} of q-series with the index $-h-13 / 42$ are negative.
(0) The list of values of h (Step 3). $\Rightarrow-8 / 77,-47 / 77,-2 / 7$, $-3 / 7 . \quad(\sharp=4)$
(0) $h \neq-8 / 77,-47 / 77$. \Leftarrow The b_{2} of the q-series with the index 17 /42 are not integers.

Conformal weights for $c=-68 / 7$

(1) The list of values of h (Step 1). 132/133, -227/133, 72/77, -127/77, 179/203, $-324 / 203$, $5 / 7,-10 / 7,-8 / 77,-47 / 77-2 / 7,-3 / 7 . \quad(\sharp=12)$
(2) $h \neq-227 / 133,-127 / 77,-324 / 203,-10 / 7 \Leftarrow$ The b_{1} of the q-series with the index $h+59 / 42$ are negative.
(3) The list of values of h (Step 2). 132/133, 72/77, 179/203, 5/7, -8/77, -47/77, $-2 / 7,-3 / 7$. $(\sharp=8)$
(9) $h \neq 132 / 133,72 / 77,179 / 203,5 / 7 . \Leftarrow$ The b_{1} of q-series with the index $-h-13 / 42$ are negative.
(5) The list of values of h (Step 3). $\Rightarrow-8 / 77,-47 / 77,-2 / 7$, $-3 / 7 . \quad(\sharp=4)$
(0) $h \neq-8 / 77,-47 / 77$. \Leftarrow The b_{2} of the q-series with the index $17 / 42$ are not integers.
(c) $\vec{h}=\{0,-2 / 7,-3 / 7\}$.

Theorem ($c=-68 / 7$)

Theorem 3

Let V be a vertex operator algebra (of CFT type) with central charge $-68 / 7$. Suppose that
(a) The conformal weights are rational numbers,
(b) The space of characters is 3-dimensional,
(c) The set of characters forms a fundamental system of solutions of a 3rd order MLDE.

Then V is isomorphic to the Virasoro vertex operator algebra with central charge $-68 / 7$ and conformal weight $\{0,-2 / 7,-3 / 7\}$.

Proof.
 Use the same discussion given for $c=1 / 2$.

Theorem ($c=-68 / 7$)

Theorem 3

Let V be a vertex operator algebra (of CFT type) with central charge $-68 / 7$. Suppose that
(a) The conformal weights are rational numbers,
(b) The space of characters is 3-dimensional,
(c) The set of characters forms a fundamental system of solutions of a 3rd order MLDE.

Then V is isomorphic to the Virasoro vertex operator algebra with central charge $-68 / 7$ and conformal weight $\{0,-2 / 7,-3 / 7\}$.

Proof.

Use the same discussion given for $c=1 / 2$.

MLDE ($c=-68 / 7$)

The MLDE

$$
D^{3}(f)-\frac{1}{2} E_{2} D^{2}(f)+\left(\frac{1}{2} E_{2}^{\prime}+\frac{1}{28} E_{4}\right) f^{\prime}+\frac{85}{74088} E_{6} f=0 .
$$

The characters ($c=-68 / 7$)

(1) The characters are given by

The characters ($c=-68 / 7$)

(1) The characters are given by

$$
\begin{aligned}
\operatorname{ch}_{V}(\tau)= & \frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(14 n+5)^{2} / 56} \\
& =q^{17 / 42} \prod_{\substack{n>0 \\
n \neq 0, \pm 1 \bmod 7}}\left(1-q^{n}\right)^{-1} \\
\operatorname{ch}_{-2 / 7}(\tau) & =\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(14 n+3)^{2} / 56} \\
& =q^{5 / 42} \prod_{\substack{n>0 \\
n \neq 0, \pm 2 \bmod 7}}\left(1-q^{n}\right)^{-1}, \\
\operatorname{ch}_{-3 / 7(\tau)} & =\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(14 n+1)^{2} / 56} \\
& =q^{-1 / 42} \prod_{\substack{n>0}}
\end{aligned}
$$

The characters ($c=-68 / 7$)

(1) The characters are given by

$$
\begin{aligned}
& \operatorname{ch}_{V}(\tau)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(14 n+5)^{2} / 56} \\
& =q^{17 / 42} \prod_{\substack{n>0 \\
n \neq 0, \pm 1 \bmod 7}}\left(1-q^{n}\right)^{-1}, \\
& \operatorname{ch}_{-2 / 7}(\tau)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(14 n+3)^{2} / 56} \\
& =q^{5 / 42} \prod_{\substack{n>0 \\
n \neq 0, \pm 2 \bmod 7}}\left(1-q^{n}\right)^{-1}, \\
& \operatorname{ch}_{-3 / 7}(\tau)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(14 n+1)^{2} / 56} \\
& =q^{-1 / 42} \prod\left(1-q^{n}\right)^{-1}, \\
& n \not \equiv 0, \pm 3 \bmod 7
\end{aligned}
$$

Vertex operator algebras with central charge $c=8$

Definition 4

Let V and W be vertex operator algebras. If V and W has the same space of characters we say that V and W are pseudo-isomorphic.
(1) We study VOAs whose central charge is 8
(2) A typical example is V_{L} where $L=\sqrt{2} E_{8}$.

Theorem 5
Let V be a vertex operator algebra with central charge 8 and the snace of solutions which gives a fundamental system of solutions of a 3rd order MLDE. Then V is pseudo-isomorphic to V_{L} where

Vertex operator algebras with central charge $c=8$

Definition 4

Let V and W be vertex operator algebras. If V and W has the same space of characters we say that V and W are pseudo-isomorphic.
(1) We study VOAs whose central charge is 8 .
(2) A typical example is V_{L} where $L=\sqrt{ } 2 E_{8}$

Theorem 5

Let V be a vertex operator algebra with central charge 8 and the space of solutions which gives a fundamental system of solutions of a 3rd order MLDE. Then V is pseudo-isomorphic to V_{L} where

Vertex operator algebras with central charge $c=8$

Definition 4

Let V and W be vertex operator algebras. If V and W has the same space of characters we say that V and W are pseudo-isomorphic.
(1) We study VOAs whose central charge is 8 .
(2) A typical example is V_{L} where $L=\sqrt{2} E_{8}$.

Vertex operator algebras with central charge $c=8$

Definition 4

Let V and W be vertex operator algebras. If V and W has the same space of characters we say that V and W are pseudo-isomorphic.
(1) We study VOAs whose central charge is 8 .
(2) A typical example is V_{L} where $L=\sqrt{2} E_{8}$.

Theorem 5

Let V be a vertex operator algebra with central charge 8 and the space of solutions which gives a fundamental system of solutions of a 3rd order MLDE. Then V is pseudo-isomorphic to V_{L} where $L=\sqrt{2} E_{8}$.

Vertex operator algebras with central charge $c=16$

Theorem 6

Let V be a vertex operator algebra with central charge 16, rational conformal weights, and the space of solutions which gives a fundamental system of solutions of a 3rd order MLDE. Then V is pseudo-isomorphic to either the Barnes-Wall lattice ($c=16, h=1$) vertex operator algebra, the affine VOA of type $D_{16}(c=16, h=2)$ and level 1 and the affine VOA of type D_{28} with level $1(c=28, h=3)$.

Vertex operator algebras with central charge $c=16$

Theorem 7

Let V be a vertex operator algebra with $c=16$ and $h=1$. Then the conformal weighs is $\{0,1,3 / 2\}$ and V is pseudo-isomorphic to the Barnes-Wall lattice vertex operator algebra V_{L}. The set of characters is given by

Further V is pseudo-isomorphic to the orbifold V_{L}^{+}whose sets of conformal weights and characters are same as those of V.

Vertex operator algebras with central charge $c=16$

Theorem 7

Let V be a vertex operator algebra with $c=16$ and $h=1$. Then the conformal weighs is $\{0,1,3 / 2\}$ and V is pseudo-isomorphic to the Barnes-Wall lattice vertex operator algebra V_{L}. The set of characters is given by

$$
\operatorname{ch}_{v}(\tau)=x(q)^{4}-96 x(q)^{2} y(q)^{2}+6144 y(q)^{4}
$$

Further V is pseudo-isomorphic to the orbifold V_{L}^{+}whose sets of conformal weights and characters are same as those of V.

Vertex operator algebras with central charge $c=16$

Theorem 7

Let V be a vertex operator algebra with $c=16$ and $h=1$. Then the conformal weighs is $\{0,1,3 / 2\}$ and V is pseudo-isomorphic to the Barnes-Wall lattice vertex operator algebra V_{L}. The set of characters is given by

$$
\begin{aligned}
& \operatorname{ch}_{v}(\tau)=x(q)^{4}-96 x(q)^{2} y(q)^{2}+6144 y(q)^{4} \\
& \operatorname{ch}_{1}(\tau)=32 y(q)^{2}\left(x(q)^{2}+64 y(q)^{2}\right)
\end{aligned}
$$

Further V is pseudo-isomorphic to the orbifold V_{L}^{+}whose sets of conformal weights and characters are same as those of V.

Vertex operator algebras with central charge $c=16$

Theorem 7

Let V be a vertex operator algebra with $c=16$ and $h=1$. Then the conformal weighs is $\{0,1,3 / 2\}$ and V is pseudo-isomorphic to the Barnes-Wall lattice vertex operator algebra V_{L}. The set of characters is given by

$$
\begin{aligned}
& \operatorname{ch}_{v}(\tau)=x(q)^{4}-96 x(q)^{2} y(q)^{2}+6144 y(q)^{4} \\
& \operatorname{ch}_{1}(\tau)=32 y(q)^{2}\left(x(q)^{2}+64 y(q)^{2}\right) \\
& \operatorname{ch}_{3 / 2}(\tau)=512 x(q) y(q)^{3}
\end{aligned}
$$

Further V is pseudo-isomorphic to the orbifold V_{L}^{+}whose sets of
conformal weights and characters are same as those of V

Vertex operator algebras with central charge $c=16$

Theorem 7

Let V be a vertex operator algebra with $c=16$ and $h=1$. Then the conformal weighs is $\{0,1,3 / 2\}$ and V is pseudo-isomorphic to the Barnes-Wall lattice vertex operator algebra V_{L}. The set of characters is given by

$$
\begin{aligned}
& \operatorname{ch}_{v}(\tau)=x(q)^{4}-96 x(q)^{2} y(q)^{2}+6144 y(q)^{4} \\
& \operatorname{ch}_{1}(\tau)=32 y(q)^{2}\left(x(q)^{2}+64 y(q)^{2}\right) \\
& \operatorname{ch}_{3 / 2}(\tau)=512 x(q) y(q)^{3}
\end{aligned}
$$

Further V is pseudo-isomorphic to the orbifold V_{L}^{+}whose sets of conformal weights and characters are same as those of V.

Modular forms

$$
\begin{aligned}
& x(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+7)^{2} / 72}, \\
& y(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+5)^{2} / 72}, \\
& z(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(6 n+1)^{2} / 8}, \\
& w(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+1)^{2} / 72} .
\end{aligned}
$$

Remark. The functions $\eta(q)^{2 / 3} x(q), \eta(q)^{2 / 3} y(q), \eta(q)^{2 / 3} z(q)$ and $\eta(q)^{2 / 3} w(q)$ are modular forms of weight $1 / 3$ on a principal
congruence subgroup of level 9 .

Modular forms

$$
\begin{aligned}
& x(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+7)^{2} / 72}, \\
& y(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+5)^{2} / 72,} \\
& z(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(6 n+1)^{2} / 8}, \\
& w(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+1)^{2} / 72},
\end{aligned}
$$

Remark. The functions $\eta(q)^{2 / 3} x(q), \eta(q)^{2 / 3} y(q), \eta(q)^{2 / 3} z(q)$ and $\eta(q)^{2 / 3} w(q)$ are modular forms of weight $1 / 3$ on a principal
congruence subgroup of level 9

Modular forms

$$
\begin{aligned}
& x(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+7)^{2} / 72}, \\
& y(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+5)^{2} / 72}, \\
& z(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(6 n+1)^{2} / 8}, \\
& w(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+1)^{2} / 72},
\end{aligned}
$$

Remark. The functions $\eta(q)^{2 / 3} x(q), \eta(q)^{2 / 3} y(q), \eta(q)^{2 / 3} z(q)$ and $\eta(q)^{2 / 3} w(q)$ are modular forms of weight $1 / 3$ on a principal
congruence subgroup of level 9

Modular forms

$$
\begin{aligned}
& x(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+7)^{2} / 72}, \\
& y(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+5)^{2} / 72,} \\
& z(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(6 n+1)^{2} / 8}, \\
& w(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+1)^{2} / 72} .
\end{aligned}
$$

Remark. The functions $\eta(q)^{2 / 3} x(q), \eta(q)^{2 / 3} y(q), \eta(q)^{2 / 3} z(q)$ and $\eta(q)^{2 / 3} w(q)$ are modular forms of weight $1 / 3$ on a principal
congruence subgroup of level 9

Modular forms

$$
\begin{aligned}
& x(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+7)^{2} / 72}, \\
& y(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+5)^{2} / 72}, \\
& z(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(6 n+1)^{2} / 8}, \\
& w(q)=\frac{1}{\eta(q)} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(18 n+1)^{2} / 72} .
\end{aligned}
$$

Remark. The functions $\eta(q)^{2 / 3} x(q), \eta(q)^{2 / 3} y(q), \eta(q)^{2 / 3} z(q)$ and $\eta(q)^{2 / 3} w(q)$ are modular forms of weight $1 / 3$ on a principal congruence subgroup of level 9 .

Vertex operator algebras with central charge $c=16$

Theorem 8

Let V be a vertex operator algebra with $c=16$ and $h=2$. Then the conformal weights is $\{0,1 / 2,2\}$ and V is pseudo-isomorphic to the affine VOA of type D_{16} and level 1 . The set of characters is given by

Vertex operator algebras with central charge $c=16$

Theorem 8

Let V be a vertex operator algebra with $c=16$ and $h=2$. Then the conformal weights is $\{0,1 / 2,2\}$ and V is pseudo-isomorphic to the affine VOA of type D_{16} and level 1 . The set of characters is given by

$$
\begin{aligned}
& \mathrm{ch}_{V}=\left(\phi_{1}(q)^{32}+\phi_{2}(q)^{32}\right) / 2, \quad \mathrm{ch}_{1 / 2}=\left(\phi_{1}(q)^{32}-\phi_{2}(q)^{32}\right) / 2 \\
& \mathrm{ch}_{2}=\phi_{3}(q)^{32} / 2
\end{aligned}
$$

Vertex operator algebras with central charge $c=16$

Theorem 9

Let V be a vertex operator algebra with $c=16$ and $h=3$. Then the conformal weights is $\{0,-1 / 2,3\}$ and V is pseudo-isomorphic to the affine VOA of type D_{28} with level 1 (however, the central charge is 28). The set of characters is given by

Vertex operator algebras with central charge $c=16$

Theorem 9

Let V be a vertex operator algebra with $c=16$ and $h=3$. Then the conformal weights is $\{0,-1 / 2,3\}$ and V is pseudo-isomorphic to the affine VOA of type D_{28} with level 1 (however, the central charge is 28). The set of characters is given by

$$
\operatorname{ch}_{V}(\tau)=\frac{\phi_{1}(q)^{56}+\phi_{2}(q)^{56}}{2}
$$

Vertex operator algebras with central charge $c=16$

Theorem 9

Let V be a vertex operator algebra with $c=16$ and $h=3$. Then the conformal weights is $\{0,-1 / 2,3\}$ and V is pseudo-isomorphic to the affine VOA of type D_{28} with level 1 (however, the central charge is 28). The set of characters is given by

$$
\begin{aligned}
& \operatorname{ch}_{V}(\tau)=\frac{\phi_{1}(q)^{56}+\phi_{2}(q)^{56}}{2} \\
& \operatorname{ch}_{-1 / 2}(\tau)=\frac{\phi_{1}(q)^{56}-\phi_{2}(q)^{56}}{2}
\end{aligned}
$$

Vertex operator algebras with central charge $c=16$

Theorem 9

Let V be a vertex operator algebra with $c=16$ and $h=3$. Then the conformal weights is $\{0,-1 / 2,3\}$ and V is pseudo-isomorphic to the affine VOA of type D_{28} with level 1 (however, the central charge is 28). The set of characters is given by

$$
\begin{aligned}
& \operatorname{ch}_{V}(\tau)=\frac{\phi_{1}(q)^{56}+\phi_{2}(q)^{56}}{2} \\
& \operatorname{ch}_{-1 / 2}(\tau)=\frac{\phi_{1}(q)^{56}-\phi_{2}(q)^{56}}{2} \\
& \operatorname{ch}_{3}(\tau)=\frac{\phi_{3}(q)^{56}}{2}=134217728 y(q)^{7} .
\end{aligned}
$$

Thank you for your attentions.

Thank you for your attentions.

Answer to expected questions

(1) What happens when the minimal model has 4 simple modules? Answer. We cannot characterize these minimal models by their central charges. One candidate of conditions is

$$
\mathrm{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+m q^{2}+\cdots\right), \quad(m \in \mathbb{N}) .
$$

We are working on up to 6
(2) Can you characterize the whole minimal models? Answer. It promises. Probably we have to use the result of C. Dong and W. Zhang (JA.)
(3) Can you classify affine VOAs by their central charges? Answer. Basically, yes! A condition for this is that
(1) Can you classify lattice VOAs by their central charges?

Answer. Give me a lattice VOA. The it would be yes

Answer to expected questions

(1) What happens when the minimal model has 4 simple modules? Answer. We cannot characterize these minimal models by their central charges. One candidate of conditions is

$$
\operatorname{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+m q^{2}+\cdots\right), \quad(m \in \mathbb{N})
$$

We are working on up to 6 .
(2) Can you characterize the whole minimal models?

Answer. It promises. Probably we have to use the result of
C. Dong and W. Zhang (JA.)
(3) Can you classify affine VOAs by their central charges?

Answer. Basically, yes! A condition for this is that

$$
\operatorname{ch}_{V}=q^{-c / 24}(1+\operatorname{dim} \mathfrak{g} \cdot q+\cdots) .
$$

(1) Can you classify lattice VOAs by their central charges?

Answer. Give me a lattice VOA. The it would be yes.

Answer to expected questions

(1) What happens when the minimal model has 4 simple modules? Answer. We cannot characterize these minimal models by their central charges. One candidate of conditions is

$$
\mathrm{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+m q^{2}+\cdots\right), \quad(m \in \mathbb{N})
$$

We are working on up to 6 .
(2) Can you characterize the whole minimal models?

Answer. It promises. Probably we have to use the result of
C. Dong and W. Zhang (JA.)
(3) Can you classify affine VOAs by their central charges?

Answer. Basically, yes! A condition for this is that

$$
\operatorname{ch}_{V}=q^{-c / 24}(1+\operatorname{dim} \mathfrak{g} \cdot q+\cdots) .
$$

(9) Can you classify lattice VOAs by their central charges? Answer. Give me a lattice VOA. The it would be yes.

